This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaddm1cl | |- ( ( A e. NN /\ B e. NN ) -> ( ( A + B ) - 1 ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 2 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | addsub | |- ( ( A e. CC /\ B e. CC /\ 1 e. CC ) -> ( ( A + B ) - 1 ) = ( ( A - 1 ) + B ) ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - 1 ) = ( ( A - 1 ) + B ) ) |
| 6 | 1 2 5 | syl2an | |- ( ( A e. NN /\ B e. NN ) -> ( ( A + B ) - 1 ) = ( ( A - 1 ) + B ) ) |
| 7 | nnm1nn0 | |- ( A e. NN -> ( A - 1 ) e. NN0 ) |
|
| 8 | nn0nnaddcl | |- ( ( ( A - 1 ) e. NN0 /\ B e. NN ) -> ( ( A - 1 ) + B ) e. NN ) |
|
| 9 | 7 8 | sylan | |- ( ( A e. NN /\ B e. NN ) -> ( ( A - 1 ) + B ) e. NN ) |
| 10 | 6 9 | eqeltrd | |- ( ( A e. NN /\ B e. NN ) -> ( ( A + B ) - 1 ) e. NN ) |