This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaddm1cl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) − 1 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 2 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | addsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 1 ) = ( ( 𝐴 − 1 ) + 𝐵 ) ) | |
| 5 | 3 4 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 1 ) = ( ( 𝐴 − 1 ) + 𝐵 ) ) |
| 6 | 1 2 5 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) − 1 ) = ( ( 𝐴 − 1 ) + 𝐵 ) ) |
| 7 | nnm1nn0 | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 − 1 ) ∈ ℕ0 ) | |
| 8 | nn0nnaddcl | ⊢ ( ( ( 𝐴 − 1 ) ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − 1 ) + 𝐵 ) ∈ ℕ ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − 1 ) + 𝐵 ) ∈ ℕ ) |
| 10 | 6 9 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) − 1 ) ∈ ℕ ) |