This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition to zero. Remark in proof of Theorem 4K(2) of Enderton p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r ) so that we can avoid ax-rep , which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nna0r | |- ( A e. _om -> ( (/) +o A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( (/) +o x ) = ( (/) +o (/) ) ) |
|
| 2 | id | |- ( x = (/) -> x = (/) ) |
|
| 3 | 1 2 | eqeq12d | |- ( x = (/) -> ( ( (/) +o x ) = x <-> ( (/) +o (/) ) = (/) ) ) |
| 4 | oveq2 | |- ( x = y -> ( (/) +o x ) = ( (/) +o y ) ) |
|
| 5 | id | |- ( x = y -> x = y ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = y -> ( ( (/) +o x ) = x <-> ( (/) +o y ) = y ) ) |
| 7 | oveq2 | |- ( x = suc y -> ( (/) +o x ) = ( (/) +o suc y ) ) |
|
| 8 | id | |- ( x = suc y -> x = suc y ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = suc y -> ( ( (/) +o x ) = x <-> ( (/) +o suc y ) = suc y ) ) |
| 10 | oveq2 | |- ( x = A -> ( (/) +o x ) = ( (/) +o A ) ) |
|
| 11 | id | |- ( x = A -> x = A ) |
|
| 12 | 10 11 | eqeq12d | |- ( x = A -> ( ( (/) +o x ) = x <-> ( (/) +o A ) = A ) ) |
| 13 | 0elon | |- (/) e. On |
|
| 14 | oa0 | |- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
|
| 15 | 13 14 | ax-mp | |- ( (/) +o (/) ) = (/) |
| 16 | peano1 | |- (/) e. _om |
|
| 17 | nnasuc | |- ( ( (/) e. _om /\ y e. _om ) -> ( (/) +o suc y ) = suc ( (/) +o y ) ) |
|
| 18 | 16 17 | mpan | |- ( y e. _om -> ( (/) +o suc y ) = suc ( (/) +o y ) ) |
| 19 | suceq | |- ( ( (/) +o y ) = y -> suc ( (/) +o y ) = suc y ) |
|
| 20 | 19 | eqeq2d | |- ( ( (/) +o y ) = y -> ( ( (/) +o suc y ) = suc ( (/) +o y ) <-> ( (/) +o suc y ) = suc y ) ) |
| 21 | 18 20 | syl5ibcom | |- ( y e. _om -> ( ( (/) +o y ) = y -> ( (/) +o suc y ) = suc y ) ) |
| 22 | 3 6 9 12 15 21 | finds | |- ( A e. _om -> ( (/) +o A ) = A ) |