This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a nonzero element is a positive real. (Contributed by NM, 20-Nov-2007) (Revised by AV, 8-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmgt0.x | |- X = ( Base ` G ) |
|
| nmgt0.n | |- N = ( norm ` G ) |
||
| nmgt0.z | |- .0. = ( 0g ` G ) |
||
| Assertion | nmgt0 | |- ( ( G e. NrmGrp /\ A e. X ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmgt0.x | |- X = ( Base ` G ) |
|
| 2 | nmgt0.n | |- N = ( norm ` G ) |
|
| 3 | nmgt0.z | |- .0. = ( 0g ` G ) |
|
| 4 | 1 2 3 | nmeq0 | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) |
| 5 | 4 | necon3bid | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= .0. ) ) |
| 6 | 1 2 | nmcl | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) |
| 7 | 1 2 | nmge0 | |- ( ( G e. NrmGrp /\ A e. X ) -> 0 <_ ( N ` A ) ) |
| 8 | ne0gt0 | |- ( ( ( N ` A ) e. RR /\ 0 <_ ( N ` A ) ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) |
| 10 | 5 9 | bitr3d | |- ( ( G e. NrmGrp /\ A e. X ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) |