This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a nonzero element is a positive real. (Contributed by NM, 20-Nov-2007) (Revised by AV, 8-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmgt0.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nmgt0.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nmgt0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | nmgt0 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmgt0.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nmgt0.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | nmgt0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | nmeq0 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 5 | 4 | necon3bid | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 6 | 1 2 | nmcl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 7 | 1 2 | nmge0 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| 8 | ne0gt0 | ⊢ ( ( ( 𝑁 ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ 𝐴 ) ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
| 10 | 5 9 | bitr3d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |