This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfopabd.1 | |- F/ x ph |
|
| nfopabd.2 | |- F/ y ph |
||
| nfopabd.4 | |- ( ph -> F/ z ps ) |
||
| Assertion | nfopabd | |- ( ph -> F/_ z { <. x , y >. | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopabd.1 | |- F/ x ph |
|
| 2 | nfopabd.2 | |- F/ y ph |
|
| 3 | nfopabd.4 | |- ( ph -> F/ z ps ) |
|
| 4 | df-opab | |- { <. x , y >. | ps } = { w | E. x E. y ( w = <. x , y >. /\ ps ) } |
|
| 5 | nfv | |- F/ w ph |
|
| 6 | nfvd | |- ( ph -> F/ z w = <. x , y >. ) |
|
| 7 | 6 3 | nfand | |- ( ph -> F/ z ( w = <. x , y >. /\ ps ) ) |
| 8 | 2 7 | nfexd | |- ( ph -> F/ z E. y ( w = <. x , y >. /\ ps ) ) |
| 9 | 1 8 | nfexd | |- ( ph -> F/ z E. x E. y ( w = <. x , y >. /\ ps ) ) |
| 10 | 5 9 | nfabdw | |- ( ph -> F/_ z { w | E. x E. y ( w = <. x , y >. /\ ps ) } ) |
| 11 | 4 10 | nfcxfrd | |- ( ph -> F/_ z { <. x , y >. | ps } ) |