This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfriota . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfriotadw when possible. (Contributed by NM, 18-Feb-2013) (Revised by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfriotad.1 | |- F/ y ph |
|
| nfriotad.2 | |- ( ph -> F/ x ps ) |
||
| nfriotad.3 | |- ( ph -> F/_ x A ) |
||
| Assertion | nfriotad | |- ( ph -> F/_ x ( iota_ y e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfriotad.1 | |- F/ y ph |
|
| 2 | nfriotad.2 | |- ( ph -> F/ x ps ) |
|
| 3 | nfriotad.3 | |- ( ph -> F/_ x A ) |
|
| 4 | df-riota | |- ( iota_ y e. A ps ) = ( iota y ( y e. A /\ ps ) ) |
|
| 5 | nfnae | |- F/ y -. A. x x = y |
|
| 6 | 1 5 | nfan | |- F/ y ( ph /\ -. A. x x = y ) |
| 7 | nfcvf | |- ( -. A. x x = y -> F/_ x y ) |
|
| 8 | 7 | adantl | |- ( ( ph /\ -. A. x x = y ) -> F/_ x y ) |
| 9 | 3 | adantr | |- ( ( ph /\ -. A. x x = y ) -> F/_ x A ) |
| 10 | 8 9 | nfeld | |- ( ( ph /\ -. A. x x = y ) -> F/ x y e. A ) |
| 11 | 2 | adantr | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
| 12 | 10 11 | nfand | |- ( ( ph /\ -. A. x x = y ) -> F/ x ( y e. A /\ ps ) ) |
| 13 | 6 12 | nfiotad | |- ( ( ph /\ -. A. x x = y ) -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 14 | 13 | ex | |- ( ph -> ( -. A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) ) |
| 15 | nfiota1 | |- F/_ y ( iota y ( y e. A /\ ps ) ) |
|
| 16 | eqidd | |- ( A. x x = y -> ( iota y ( y e. A /\ ps ) ) = ( iota y ( y e. A /\ ps ) ) ) |
|
| 17 | 16 | drnfc1 | |- ( A. x x = y -> ( F/_ x ( iota y ( y e. A /\ ps ) ) <-> F/_ y ( iota y ( y e. A /\ ps ) ) ) ) |
| 18 | 15 17 | mpbiri | |- ( A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 19 | 14 18 | pm2.61d2 | |- ( ph -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 20 | 4 19 | nfcxfrd | |- ( ph -> F/_ x ( iota_ y e. A ps ) ) |