This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfreu . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrmod.1 | |- F/ y ph |
|
| nfrmod.2 | |- ( ph -> F/_ x A ) |
||
| nfrmod.3 | |- ( ph -> F/ x ps ) |
||
| Assertion | nfreud | |- ( ph -> F/ x E! y e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrmod.1 | |- F/ y ph |
|
| 2 | nfrmod.2 | |- ( ph -> F/_ x A ) |
|
| 3 | nfrmod.3 | |- ( ph -> F/ x ps ) |
|
| 4 | df-reu | |- ( E! y e. A ps <-> E! y ( y e. A /\ ps ) ) |
|
| 5 | nfcvf | |- ( -. A. x x = y -> F/_ x y ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ -. A. x x = y ) -> F/_ x y ) |
| 7 | 2 | adantr | |- ( ( ph /\ -. A. x x = y ) -> F/_ x A ) |
| 8 | 6 7 | nfeld | |- ( ( ph /\ -. A. x x = y ) -> F/ x y e. A ) |
| 9 | 3 | adantr | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
| 10 | 8 9 | nfand | |- ( ( ph /\ -. A. x x = y ) -> F/ x ( y e. A /\ ps ) ) |
| 11 | 1 10 | nfeud2 | |- ( ph -> F/ x E! y ( y e. A /\ ps ) ) |
| 12 | 4 11 | nfxfrd | |- ( ph -> F/ x E! y e. A ps ) |