This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfrmow when possible. (Contributed by NM, 16-Jun-2017) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrmo.1 | |- F/_ x A |
|
| nfrmo.2 | |- F/ x ph |
||
| Assertion | nfrmo | |- F/ x E* y e. A ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrmo.1 | |- F/_ x A |
|
| 2 | nfrmo.2 | |- F/ x ph |
|
| 3 | df-rmo | |- ( E* y e. A ph <-> E* y ( y e. A /\ ph ) ) |
|
| 4 | nftru | |- F/ y T. |
|
| 5 | nfcvf | |- ( -. A. x x = y -> F/_ x y ) |
|
| 6 | 1 | a1i | |- ( -. A. x x = y -> F/_ x A ) |
| 7 | 5 6 | nfeld | |- ( -. A. x x = y -> F/ x y e. A ) |
| 8 | 2 | a1i | |- ( -. A. x x = y -> F/ x ph ) |
| 9 | 7 8 | nfand | |- ( -. A. x x = y -> F/ x ( y e. A /\ ph ) ) |
| 10 | 9 | adantl | |- ( ( T. /\ -. A. x x = y ) -> F/ x ( y e. A /\ ph ) ) |
| 11 | 4 10 | nfmod2 | |- ( T. -> F/ x E* y ( y e. A /\ ph ) ) |
| 12 | 11 | mptru | |- F/ x E* y ( y e. A /\ ph ) |
| 13 | 3 12 | nfxfr | |- F/ x E* y e. A ph |