This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfreu . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrmod.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfrmod.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
| nfrmod.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
| Assertion | nfreud | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃! 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrmod.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfrmod.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 3 | nfrmod.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 4 | df-reu | ⊢ ( ∃! 𝑦 ∈ 𝐴 𝜓 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 5 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝐴 ) |
| 8 | 6 7 | nfeld | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 9 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) |
| 10 | 8 9 | nfand | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 11 | 1 10 | nfeud2 | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 12 | 4 11 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃! 𝑦 ∈ 𝐴 𝜓 ) |