This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfrabw when possible. (Contributed by NM, 13-Oct-2003) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrab.1 | ||
| nfrab.2 | |||
| Assertion | nfrab |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrab.1 | ||
| 2 | nfrab.2 | ||
| 3 | df-rab | ||
| 4 | nftru | ||
| 5 | 2 | nfcri | |
| 6 | eleq1w | ||
| 7 | 5 6 | dvelimnf | |
| 8 | 1 | a1i | |
| 9 | 7 8 | nfand | |
| 10 | 9 | adantl | |
| 11 | 4 10 | nfabd2 | |
| 12 | 11 | mptru | |
| 13 | 3 12 | nfcxfr |