This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for disjoint collection. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfdisjw when possible. (Contributed by Mario Carneiro, 14-Nov-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfdisj.1 | |- F/_ y A |
|
| nfdisj.2 | |- F/_ y B |
||
| Assertion | nfdisj | |- F/ y Disj_ x e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfdisj.1 | |- F/_ y A |
|
| 2 | nfdisj.2 | |- F/_ y B |
|
| 3 | dfdisj2 | |- ( Disj_ x e. A B <-> A. z E* x ( x e. A /\ z e. B ) ) |
|
| 4 | nftru | |- F/ x T. |
|
| 5 | nfcvf | |- ( -. A. y y = x -> F/_ y x ) |
|
| 6 | 1 | a1i | |- ( -. A. y y = x -> F/_ y A ) |
| 7 | 5 6 | nfeld | |- ( -. A. y y = x -> F/ y x e. A ) |
| 8 | 2 | nfcri | |- F/ y z e. B |
| 9 | 8 | a1i | |- ( -. A. y y = x -> F/ y z e. B ) |
| 10 | 7 9 | nfand | |- ( -. A. y y = x -> F/ y ( x e. A /\ z e. B ) ) |
| 11 | 10 | adantl | |- ( ( T. /\ -. A. y y = x ) -> F/ y ( x e. A /\ z e. B ) ) |
| 12 | 4 11 | nfmod2 | |- ( T. -> F/ y E* x ( x e. A /\ z e. B ) ) |
| 13 | 12 | mptru | |- F/ y E* x ( x e. A /\ z e. B ) |
| 14 | 13 | nfal | |- F/ y A. z E* x ( x e. A /\ z e. B ) |
| 15 | 3 14 | nfxfr | |- F/ y Disj_ x e. A B |