This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for disjoint collection. Version of nfdisj with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfdisjw.1 | |- F/_ y A |
|
| nfdisjw.2 | |- F/_ y B |
||
| Assertion | nfdisjw | |- F/ y Disj_ x e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfdisjw.1 | |- F/_ y A |
|
| 2 | nfdisjw.2 | |- F/_ y B |
|
| 3 | dfdisj2 | |- ( Disj_ x e. A B <-> A. z E* x ( x e. A /\ z e. B ) ) |
|
| 4 | nftru | |- F/ x T. |
|
| 5 | nfcvd | |- ( T. -> F/_ y x ) |
|
| 6 | 1 | a1i | |- ( T. -> F/_ y A ) |
| 7 | 5 6 | nfeld | |- ( T. -> F/ y x e. A ) |
| 8 | 2 | nfcri | |- F/ y z e. B |
| 9 | 8 | a1i | |- ( T. -> F/ y z e. B ) |
| 10 | 7 9 | nfand | |- ( T. -> F/ y ( x e. A /\ z e. B ) ) |
| 11 | 4 10 | nfmodv | |- ( T. -> F/ y E* x ( x e. A /\ z e. B ) ) |
| 12 | 11 | mptru | |- F/ y E* x ( x e. A /\ z e. B ) |
| 13 | 12 | nfal | |- F/ y A. z E* x ( x e. A /\ z e. B ) |
| 14 | 3 13 | nfxfr | |- F/ y Disj_ x e. A B |