This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for disjoint collection. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfdisjw when possible. (Contributed by Mario Carneiro, 14-Nov-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfdisj.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| nfdisj.2 | ⊢ Ⅎ 𝑦 𝐵 | ||
| Assertion | nfdisj | ⊢ Ⅎ 𝑦 Disj 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfdisj.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | nfdisj.2 | ⊢ Ⅎ 𝑦 𝐵 | |
| 3 | dfdisj2 | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) | |
| 4 | nftru | ⊢ Ⅎ 𝑥 ⊤ | |
| 5 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) | |
| 6 | 1 | a1i | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝐴 ) |
| 7 | 5 6 | nfeld | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ∈ 𝐴 ) |
| 8 | 2 | nfcri | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
| 9 | 8 | a1i | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑧 ∈ 𝐵 ) |
| 10 | 7 9 | nfand | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
| 12 | 4 11 | nfmod2 | ⊢ ( ⊤ → Ⅎ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
| 13 | 12 | mptru | ⊢ Ⅎ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) |
| 14 | 13 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑧 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) |
| 15 | 3 14 | nfxfr | ⊢ Ⅎ 𝑦 Disj 𝑥 ∈ 𝐴 𝐵 |