This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfcprod1.1 | |- F/_ k A |
|
| Assertion | nfcprod1 | |- F/_ k prod_ k e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcprod1.1 | |- F/_ k A |
|
| 2 | df-prod | |- prod_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
|
| 3 | nfcv | |- F/_ k ZZ |
|
| 4 | nfcv | |- F/_ k ( ZZ>= ` m ) |
|
| 5 | 1 4 | nfss | |- F/ k A C_ ( ZZ>= ` m ) |
| 6 | nfv | |- F/ k y =/= 0 |
|
| 7 | nfcv | |- F/_ k n |
|
| 8 | nfcv | |- F/_ k x. |
|
| 9 | nfmpt1 | |- F/_ k ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 10 | 7 8 9 | nfseq | |- F/_ k seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
| 11 | nfcv | |- F/_ k ~~> |
|
| 12 | nfcv | |- F/_ k y |
|
| 13 | 10 11 12 | nfbr | |- F/ k seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y |
| 14 | 6 13 | nfan | |- F/ k ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
| 15 | 14 | nfex | |- F/ k E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
| 16 | 4 15 | nfrexw | |- F/ k E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
| 17 | nfcv | |- F/_ k m |
|
| 18 | 17 8 9 | nfseq | |- F/_ k seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
| 19 | nfcv | |- F/_ k x |
|
| 20 | 18 11 19 | nfbr | |- F/ k seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x |
| 21 | 5 16 20 | nf3an | |- F/ k ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) |
| 22 | 3 21 | nfrexw | |- F/ k E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) |
| 23 | nfcv | |- F/_ k NN |
|
| 24 | nfcv | |- F/_ k f |
|
| 25 | nfcv | |- F/_ k ( 1 ... m ) |
|
| 26 | 24 25 1 | nff1o | |- F/ k f : ( 1 ... m ) -1-1-onto-> A |
| 27 | nfcv | |- F/_ k 1 |
|
| 28 | nfcsb1v | |- F/_ k [_ ( f ` n ) / k ]_ B |
|
| 29 | 23 28 | nfmpt | |- F/_ k ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
| 30 | 27 8 29 | nfseq | |- F/_ k seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
| 31 | 30 17 | nffv | |- F/_ k ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 32 | 31 | nfeq2 | |- F/ k x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 33 | 26 32 | nfan | |- F/ k ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 34 | 33 | nfex | |- F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 35 | 23 34 | nfrexw | |- F/ k E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 36 | 22 35 | nfor | |- F/ k ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 37 | 36 | nfiotaw | |- F/_ k ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 38 | 2 37 | nfcxfr | |- F/_ k prod_ k e. A B |