This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negn0 | |- ( ( A C_ RR /\ A =/= (/) ) -> { z e. RR | -u z e. A } =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 2 | ssel | |- ( A C_ RR -> ( x e. A -> x e. RR ) ) |
|
| 3 | renegcl | |- ( x e. RR -> -u x e. RR ) |
|
| 4 | negeq | |- ( z = -u x -> -u z = -u -u x ) |
|
| 5 | 4 | eleq1d | |- ( z = -u x -> ( -u z e. A <-> -u -u x e. A ) ) |
| 6 | 5 | elrab3 | |- ( -u x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> -u -u x e. A ) ) |
| 7 | 3 6 | syl | |- ( x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> -u -u x e. A ) ) |
| 8 | recn | |- ( x e. RR -> x e. CC ) |
|
| 9 | 8 | negnegd | |- ( x e. RR -> -u -u x = x ) |
| 10 | 9 | eleq1d | |- ( x e. RR -> ( -u -u x e. A <-> x e. A ) ) |
| 11 | 7 10 | bitrd | |- ( x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> x e. A ) ) |
| 12 | 11 | biimprd | |- ( x e. RR -> ( x e. A -> -u x e. { z e. RR | -u z e. A } ) ) |
| 13 | 2 12 | syli | |- ( A C_ RR -> ( x e. A -> -u x e. { z e. RR | -u z e. A } ) ) |
| 14 | elex2 | |- ( -u x e. { z e. RR | -u z e. A } -> E. y y e. { z e. RR | -u z e. A } ) |
|
| 15 | 13 14 | syl6 | |- ( A C_ RR -> ( x e. A -> E. y y e. { z e. RR | -u z e. A } ) ) |
| 16 | n0 | |- ( { z e. RR | -u z e. A } =/= (/) <-> E. y y e. { z e. RR | -u z e. A } ) |
|
| 17 | 15 16 | imbitrrdi | |- ( A C_ RR -> ( x e. A -> { z e. RR | -u z e. A } =/= (/) ) ) |
| 18 | 17 | exlimdv | |- ( A C_ RR -> ( E. x x e. A -> { z e. RR | -u z e. A } =/= (/) ) ) |
| 19 | 1 18 | biimtrid | |- ( A C_ RR -> ( A =/= (/) -> { z e. RR | -u z e. A } =/= (/) ) ) |
| 20 | 19 | imp | |- ( ( A C_ RR /\ A =/= (/) ) -> { z e. RR | -u z e. A } =/= (/) ) |