This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprmgcdb | |- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 2 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 3 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 5 | simpr | |- ( ( ( A e. NN /\ B e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 6 | gcdnncl | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
|
| 7 | 6 | adantr | |- ( ( ( A e. NN /\ B e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( A gcd B ) e. NN ) |
| 8 | breq1 | |- ( i = ( A gcd B ) -> ( i || A <-> ( A gcd B ) || A ) ) |
|
| 9 | breq1 | |- ( i = ( A gcd B ) -> ( i || B <-> ( A gcd B ) || B ) ) |
|
| 10 | 8 9 | anbi12d | |- ( i = ( A gcd B ) -> ( ( i || A /\ i || B ) <-> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) ) |
| 11 | eqeq1 | |- ( i = ( A gcd B ) -> ( i = 1 <-> ( A gcd B ) = 1 ) ) |
|
| 12 | 10 11 | imbi12d | |- ( i = ( A gcd B ) -> ( ( ( i || A /\ i || B ) -> i = 1 ) <-> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> ( A gcd B ) = 1 ) ) ) |
| 13 | 12 | rspcv | |- ( ( A gcd B ) e. NN -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> ( A gcd B ) = 1 ) ) ) |
| 14 | 7 13 | syl | |- ( ( ( A e. NN /\ B e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> ( A gcd B ) = 1 ) ) ) |
| 15 | 5 14 | mpid | |- ( ( ( A e. NN /\ B e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> ( A gcd B ) = 1 ) ) |
| 16 | 4 15 | mpdan | |- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> ( A gcd B ) = 1 ) ) |
| 17 | simpl | |- ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( A e. NN /\ B e. NN ) ) |
|
| 18 | 17 | anim1ci | |- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( i e. NN /\ ( A e. NN /\ B e. NN ) ) ) |
| 19 | 3anass | |- ( ( i e. NN /\ A e. NN /\ B e. NN ) <-> ( i e. NN /\ ( A e. NN /\ B e. NN ) ) ) |
|
| 20 | 18 19 | sylibr | |- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( i e. NN /\ A e. NN /\ B e. NN ) ) |
| 21 | nndvdslegcd | |- ( ( i e. NN /\ A e. NN /\ B e. NN ) -> ( ( i || A /\ i || B ) -> i <_ ( A gcd B ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( ( i || A /\ i || B ) -> i <_ ( A gcd B ) ) ) |
| 23 | breq2 | |- ( ( A gcd B ) = 1 -> ( i <_ ( A gcd B ) <-> i <_ 1 ) ) |
|
| 24 | 23 | adantr | |- ( ( ( A gcd B ) = 1 /\ i e. NN ) -> ( i <_ ( A gcd B ) <-> i <_ 1 ) ) |
| 25 | nnge1 | |- ( i e. NN -> 1 <_ i ) |
|
| 26 | nnre | |- ( i e. NN -> i e. RR ) |
|
| 27 | 1red | |- ( i e. NN -> 1 e. RR ) |
|
| 28 | 26 27 | letri3d | |- ( i e. NN -> ( i = 1 <-> ( i <_ 1 /\ 1 <_ i ) ) ) |
| 29 | 28 | biimprd | |- ( i e. NN -> ( ( i <_ 1 /\ 1 <_ i ) -> i = 1 ) ) |
| 30 | 25 29 | mpan2d | |- ( i e. NN -> ( i <_ 1 -> i = 1 ) ) |
| 31 | 30 | adantl | |- ( ( ( A gcd B ) = 1 /\ i e. NN ) -> ( i <_ 1 -> i = 1 ) ) |
| 32 | 24 31 | sylbid | |- ( ( ( A gcd B ) = 1 /\ i e. NN ) -> ( i <_ ( A gcd B ) -> i = 1 ) ) |
| 33 | 32 | adantll | |- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( i <_ ( A gcd B ) -> i = 1 ) ) |
| 34 | 22 33 | syld | |- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( ( i || A /\ i || B ) -> i = 1 ) ) |
| 35 | 34 | ralrimiva | |- ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) |
| 36 | 35 | ex | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) = 1 -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) ) |
| 37 | 16 36 | impbid | |- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |