This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 3-Nov-2020) (Revised by AV, 21-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgrnself.v | |- V = ( Vtx ` G ) |
|
| Assertion | nbgrnself | |- A. v e. V v e/ ( G NeighbVtx v ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrnself.v | |- V = ( Vtx ` G ) |
|
| 2 | neldifsnd | |- ( v e. V -> -. v e. ( V \ { v } ) ) |
|
| 3 | 2 | intnanrd | |- ( v e. V -> -. ( v e. ( V \ { v } ) /\ E. e e. ( Edg ` G ) { v , v } C_ e ) ) |
| 4 | df-nel | |- ( v e/ { n e. ( V \ { v } ) | E. e e. ( Edg ` G ) { v , n } C_ e } <-> -. v e. { n e. ( V \ { v } ) | E. e e. ( Edg ` G ) { v , n } C_ e } ) |
|
| 5 | preq2 | |- ( n = v -> { v , n } = { v , v } ) |
|
| 6 | 5 | sseq1d | |- ( n = v -> ( { v , n } C_ e <-> { v , v } C_ e ) ) |
| 7 | 6 | rexbidv | |- ( n = v -> ( E. e e. ( Edg ` G ) { v , n } C_ e <-> E. e e. ( Edg ` G ) { v , v } C_ e ) ) |
| 8 | 7 | elrab | |- ( v e. { n e. ( V \ { v } ) | E. e e. ( Edg ` G ) { v , n } C_ e } <-> ( v e. ( V \ { v } ) /\ E. e e. ( Edg ` G ) { v , v } C_ e ) ) |
| 9 | 4 8 | xchbinx | |- ( v e/ { n e. ( V \ { v } ) | E. e e. ( Edg ` G ) { v , n } C_ e } <-> -. ( v e. ( V \ { v } ) /\ E. e e. ( Edg ` G ) { v , v } C_ e ) ) |
| 10 | 3 9 | sylibr | |- ( v e. V -> v e/ { n e. ( V \ { v } ) | E. e e. ( Edg ` G ) { v , n } C_ e } ) |
| 11 | eqidd | |- ( v e. V -> v = v ) |
|
| 12 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 13 | 1 12 | nbgrval | |- ( v e. V -> ( G NeighbVtx v ) = { n e. ( V \ { v } ) | E. e e. ( Edg ` G ) { v , n } C_ e } ) |
| 14 | 11 13 | neleq12d | |- ( v e. V -> ( v e/ ( G NeighbVtx v ) <-> v e/ { n e. ( V \ { v } ) | E. e e. ( Edg ` G ) { v , n } C_ e } ) ) |
| 15 | 10 14 | mpbird | |- ( v e. V -> v e/ ( G NeighbVtx v ) ) |
| 16 | 15 | rgen | |- A. v e. V v e/ ( G NeighbVtx v ) |