This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nbgr0edg and nbgr1vtx . (Contributed by AV, 15-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgr0edglem.v | |- ( ph -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
|
| Assertion | nbgr0edglem | |- ( ph -> ( G NeighbVtx K ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgr0edglem.v | |- ( ph -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 4 | 2 3 | nbgrval | |- ( K e. ( Vtx ` G ) -> ( G NeighbVtx K ) = { n e. ( ( Vtx ` G ) \ { K } ) | E. e e. ( Edg ` G ) { K , n } C_ e } ) |
| 5 | 4 | ad2antrl | |- ( ( ( G e. _V /\ K e. _V ) /\ ( K e. ( Vtx ` G ) /\ ph ) ) -> ( G NeighbVtx K ) = { n e. ( ( Vtx ` G ) \ { K } ) | E. e e. ( Edg ` G ) { K , n } C_ e } ) |
| 6 | 1 | ad2antll | |- ( ( ( G e. _V /\ K e. _V ) /\ ( K e. ( Vtx ` G ) /\ ph ) ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
| 7 | rabeq0 | |- ( { n e. ( ( Vtx ` G ) \ { K } ) | E. e e. ( Edg ` G ) { K , n } C_ e } = (/) <-> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
|
| 8 | 6 7 | sylibr | |- ( ( ( G e. _V /\ K e. _V ) /\ ( K e. ( Vtx ` G ) /\ ph ) ) -> { n e. ( ( Vtx ` G ) \ { K } ) | E. e e. ( Edg ` G ) { K , n } C_ e } = (/) ) |
| 9 | 5 8 | eqtrd | |- ( ( ( G e. _V /\ K e. _V ) /\ ( K e. ( Vtx ` G ) /\ ph ) ) -> ( G NeighbVtx K ) = (/) ) |
| 10 | 9 | expcom | |- ( ( K e. ( Vtx ` G ) /\ ph ) -> ( ( G e. _V /\ K e. _V ) -> ( G NeighbVtx K ) = (/) ) ) |
| 11 | 10 | ex | |- ( K e. ( Vtx ` G ) -> ( ph -> ( ( G e. _V /\ K e. _V ) -> ( G NeighbVtx K ) = (/) ) ) ) |
| 12 | 11 | com23 | |- ( K e. ( Vtx ` G ) -> ( ( G e. _V /\ K e. _V ) -> ( ph -> ( G NeighbVtx K ) = (/) ) ) ) |
| 13 | df-nel | |- ( K e/ ( Vtx ` G ) <-> -. K e. ( Vtx ` G ) ) |
|
| 14 | 2 | nbgrnvtx0 | |- ( K e/ ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
| 15 | 13 14 | sylbir | |- ( -. K e. ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
| 16 | 15 | a1d | |- ( -. K e. ( Vtx ` G ) -> ( ph -> ( G NeighbVtx K ) = (/) ) ) |
| 17 | nbgrprc0 | |- ( -. ( G e. _V /\ K e. _V ) -> ( G NeighbVtx K ) = (/) ) |
|
| 18 | 17 | a1d | |- ( -. ( G e. _V /\ K e. _V ) -> ( ph -> ( G NeighbVtx K ) = (/) ) ) |
| 19 | 12 16 18 | pm2.61nii | |- ( ph -> ( G NeighbVtx K ) = (/) ) |