This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of neighbors of a vertex V in a graph G . (Contributed by Alexander van der Vekens, 7-Oct-2017) (Revised by AV, 24-Oct-2020) (Revised by AV, 21-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbgrval.v | |- V = ( Vtx ` G ) |
|
| nbgrval.e | |- E = ( Edg ` G ) |
||
| Assertion | nbgrval | |- ( N e. V -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. e e. E { N , n } C_ e } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrval.v | |- V = ( Vtx ` G ) |
|
| 2 | nbgrval.e | |- E = ( Edg ` G ) |
|
| 3 | df-nbgr | |- NeighbVtx = ( g e. _V , k e. ( Vtx ` g ) |-> { n e. ( ( Vtx ` g ) \ { k } ) | E. e e. ( Edg ` g ) { k , n } C_ e } ) |
|
| 4 | 1 | 1vgrex | |- ( N e. V -> G e. _V ) |
| 5 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
| 6 | 1 5 | eqtr4id | |- ( g = G -> V = ( Vtx ` g ) ) |
| 7 | 6 | eleq2d | |- ( g = G -> ( N e. V <-> N e. ( Vtx ` g ) ) ) |
| 8 | 7 | biimpac | |- ( ( N e. V /\ g = G ) -> N e. ( Vtx ` g ) ) |
| 9 | fvex | |- ( Vtx ` g ) e. _V |
|
| 10 | 9 | difexi | |- ( ( Vtx ` g ) \ { k } ) e. _V |
| 11 | rabexg | |- ( ( ( Vtx ` g ) \ { k } ) e. _V -> { n e. ( ( Vtx ` g ) \ { k } ) | E. e e. ( Edg ` g ) { k , n } C_ e } e. _V ) |
|
| 12 | 10 11 | mp1i | |- ( ( N e. V /\ ( g = G /\ k = N ) ) -> { n e. ( ( Vtx ` g ) \ { k } ) | E. e e. ( Edg ` g ) { k , n } C_ e } e. _V ) |
| 13 | 5 1 | eqtr4di | |- ( g = G -> ( Vtx ` g ) = V ) |
| 14 | 13 | adantr | |- ( ( g = G /\ k = N ) -> ( Vtx ` g ) = V ) |
| 15 | sneq | |- ( k = N -> { k } = { N } ) |
|
| 16 | 15 | adantl | |- ( ( g = G /\ k = N ) -> { k } = { N } ) |
| 17 | 14 16 | difeq12d | |- ( ( g = G /\ k = N ) -> ( ( Vtx ` g ) \ { k } ) = ( V \ { N } ) ) |
| 18 | 17 | adantl | |- ( ( N e. V /\ ( g = G /\ k = N ) ) -> ( ( Vtx ` g ) \ { k } ) = ( V \ { N } ) ) |
| 19 | fveq2 | |- ( g = G -> ( Edg ` g ) = ( Edg ` G ) ) |
|
| 20 | 19 2 | eqtr4di | |- ( g = G -> ( Edg ` g ) = E ) |
| 21 | 20 | adantr | |- ( ( g = G /\ k = N ) -> ( Edg ` g ) = E ) |
| 22 | 21 | adantl | |- ( ( N e. V /\ ( g = G /\ k = N ) ) -> ( Edg ` g ) = E ) |
| 23 | preq1 | |- ( k = N -> { k , n } = { N , n } ) |
|
| 24 | 23 | sseq1d | |- ( k = N -> ( { k , n } C_ e <-> { N , n } C_ e ) ) |
| 25 | 24 | adantl | |- ( ( g = G /\ k = N ) -> ( { k , n } C_ e <-> { N , n } C_ e ) ) |
| 26 | 25 | adantl | |- ( ( N e. V /\ ( g = G /\ k = N ) ) -> ( { k , n } C_ e <-> { N , n } C_ e ) ) |
| 27 | 22 26 | rexeqbidv | |- ( ( N e. V /\ ( g = G /\ k = N ) ) -> ( E. e e. ( Edg ` g ) { k , n } C_ e <-> E. e e. E { N , n } C_ e ) ) |
| 28 | 18 27 | rabeqbidv | |- ( ( N e. V /\ ( g = G /\ k = N ) ) -> { n e. ( ( Vtx ` g ) \ { k } ) | E. e e. ( Edg ` g ) { k , n } C_ e } = { n e. ( V \ { N } ) | E. e e. E { N , n } C_ e } ) |
| 29 | 4 8 12 28 | ovmpodv2 | |- ( N e. V -> ( NeighbVtx = ( g e. _V , k e. ( Vtx ` g ) |-> { n e. ( ( Vtx ` g ) \ { k } ) | E. e e. ( Edg ` g ) { k , n } C_ e } ) -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. e e. E { N , n } C_ e } ) ) |
| 30 | 3 29 | mpi | |- ( N e. V -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. e e. E { N , n } C_ e } ) |