This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a binomial with factor divided by a nonzero number. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muldivbinom2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) / 𝐶 ) = ( ( ( 𝐶 · ( 𝐴 ↑ 2 ) ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( ( 𝐵 ↑ 2 ) / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 3 | 0cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ∈ ℂ ) | |
| 4 | 1 2 3 | 3jca | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ ) ) |
| 5 | mulsubdivbinom2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) − 0 ) / 𝐶 ) = ( ( ( 𝐶 · ( 𝐴 ↑ 2 ) ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( ( ( 𝐵 ↑ 2 ) − 0 ) / 𝐶 ) ) ) | |
| 6 | 4 5 | stoic3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) − 0 ) / 𝐶 ) = ( ( ( 𝐶 · ( 𝐴 ↑ 2 ) ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( ( ( 𝐵 ↑ 2 ) − 0 ) / 𝐶 ) ) ) |
| 7 | simp3l | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ∈ ℂ ) | |
| 8 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐴 ∈ ℂ ) | |
| 9 | 7 8 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐶 · 𝐴 ) ∈ ℂ ) |
| 10 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 11 | 9 10 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) + 𝐵 ) ∈ ℂ ) |
| 12 | 11 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 13 | 12 | subid1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) − 0 ) = ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) ) |
| 14 | 13 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) = ( ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) − 0 ) ) |
| 15 | 14 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) / 𝐶 ) = ( ( ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) − 0 ) / 𝐶 ) ) |
| 16 | sqcl | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) ∈ ℂ ) | |
| 17 | 16 | subid1d | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ↑ 2 ) − 0 ) = ( 𝐵 ↑ 2 ) ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐵 ↑ 2 ) − 0 ) = ( 𝐵 ↑ 2 ) ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 ↑ 2 ) = ( ( 𝐵 ↑ 2 ) − 0 ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐵 ↑ 2 ) / 𝐶 ) = ( ( ( 𝐵 ↑ 2 ) − 0 ) / 𝐶 ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 𝐶 · ( 𝐴 ↑ 2 ) ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( ( 𝐵 ↑ 2 ) / 𝐶 ) ) = ( ( ( 𝐶 · ( 𝐴 ↑ 2 ) ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( ( ( 𝐵 ↑ 2 ) − 0 ) / 𝐶 ) ) ) |
| 22 | 6 15 21 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( ( 𝐶 · 𝐴 ) + 𝐵 ) ↑ 2 ) / 𝐶 ) = ( ( ( 𝐶 · ( 𝐴 ↑ 2 ) ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( ( 𝐵 ↑ 2 ) / 𝐶 ) ) ) |