This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcan2g | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) = ( B x. C ) <-> ( A = B \/ C = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
| 3 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 4 | 3 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 5 | 2 4 | eqeq12d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) = ( B x. C ) <-> ( C x. A ) = ( C x. B ) ) ) |
| 6 | mulcan1g | |- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( C = 0 \/ A = B ) ) ) |
|
| 7 | 6 | 3coml | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( C = 0 \/ A = B ) ) ) |
| 8 | orcom | |- ( ( C = 0 \/ A = B ) <-> ( A = B \/ C = 0 ) ) |
|
| 9 | 7 8 | bitrdi | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( A = B \/ C = 0 ) ) ) |
| 10 | 5 9 | bitrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) = ( B x. C ) <-> ( A = B \/ C = 0 ) ) ) |