This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 factors: swap the right factors in the factors of a product of two products. (Contributed by AV, 4-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul4r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐶 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 · 𝐷 ) = ( 𝐷 · 𝐶 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐶 · 𝐷 ) = ( 𝐷 · 𝐶 ) ) |
| 3 | 2 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐵 ) · ( 𝐷 · 𝐶 ) ) ) |
| 4 | mul4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐷 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐵 · 𝐶 ) ) ) | |
| 5 | 4 | ancom2s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐷 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐵 · 𝐶 ) ) ) |
| 6 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) | |
| 7 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ ) | |
| 8 | 6 7 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐷 ) · ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐶 · 𝐵 ) ) ) |
| 10 | 3 5 9 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐶 · 𝐵 ) ) ) |