This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, a set is independent if and only if all its proper subsets have closure properly contained in the closure of the set. Part of Proposition 4.1.3 in FaureFrolicher p. 83. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrieqvd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| mrieqvd.2 | |- N = ( mrCls ` A ) |
||
| mrieqvd.3 | |- I = ( mrInd ` A ) |
||
| mrieqvd.4 | |- ( ph -> S C_ X ) |
||
| Assertion | mrieqv2d | |- ( ph -> ( S e. I <-> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrieqvd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| 2 | mrieqvd.2 | |- N = ( mrCls ` A ) |
|
| 3 | mrieqvd.3 | |- I = ( mrInd ` A ) |
|
| 4 | mrieqvd.4 | |- ( ph -> S C_ X ) |
|
| 5 | pssnel | |- ( s C. S -> E. x ( x e. S /\ -. x e. s ) ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( ph /\ S e. I /\ s C. S ) -> E. x ( x e. S /\ -. x e. s ) ) |
| 7 | 1 | 3ad2ant1 | |- ( ( ph /\ S e. I /\ s C. S ) -> A e. ( Moore ` X ) ) |
| 8 | 7 | adantr | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> A e. ( Moore ` X ) ) |
| 9 | simprr | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> -. x e. s ) |
|
| 10 | difsnb | |- ( -. x e. s <-> ( s \ { x } ) = s ) |
|
| 11 | 9 10 | sylib | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( s \ { x } ) = s ) |
| 12 | simpl3 | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C. S ) |
|
| 13 | 12 | pssssd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C_ S ) |
| 14 | 13 | ssdifd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( s \ { x } ) C_ ( S \ { x } ) ) |
| 15 | 11 14 | eqsstrrd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C_ ( S \ { x } ) ) |
| 16 | simpl2 | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S e. I ) |
|
| 17 | 3 8 16 | mrissd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S C_ X ) |
| 18 | 17 | ssdifssd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( S \ { x } ) C_ X ) |
| 19 | 8 2 15 18 | mrcssd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` s ) C_ ( N ` ( S \ { x } ) ) ) |
| 20 | difssd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( S \ { x } ) C_ S ) |
|
| 21 | 8 2 20 17 | mrcssd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` ( S \ { x } ) ) C_ ( N ` S ) ) |
| 22 | 8 2 17 | mrcssidd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S C_ ( N ` S ) ) |
| 23 | simprl | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> x e. S ) |
|
| 24 | 22 23 | sseldd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> x e. ( N ` S ) ) |
| 25 | 2 3 8 16 23 | ismri2dad | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> -. x e. ( N ` ( S \ { x } ) ) ) |
| 26 | 21 24 25 | ssnelpssd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
| 27 | 19 26 | sspsstrd | |- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` s ) C. ( N ` S ) ) |
| 28 | 6 27 | exlimddv | |- ( ( ph /\ S e. I /\ s C. S ) -> ( N ` s ) C. ( N ` S ) ) |
| 29 | 28 | 3expia | |- ( ( ph /\ S e. I ) -> ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
| 30 | 29 | alrimiv | |- ( ( ph /\ S e. I ) -> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
| 31 | 30 | ex | |- ( ph -> ( S e. I -> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) ) |
| 32 | 1 | adantr | |- ( ( ph /\ x e. S ) -> A e. ( Moore ` X ) ) |
| 33 | 32 | elfvexd | |- ( ( ph /\ x e. S ) -> X e. _V ) |
| 34 | 4 | adantr | |- ( ( ph /\ x e. S ) -> S C_ X ) |
| 35 | 33 34 | ssexd | |- ( ( ph /\ x e. S ) -> S e. _V ) |
| 36 | 35 | difexd | |- ( ( ph /\ x e. S ) -> ( S \ { x } ) e. _V ) |
| 37 | simp1r | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> x e. S ) |
|
| 38 | difsnpss | |- ( x e. S <-> ( S \ { x } ) C. S ) |
|
| 39 | 37 38 | sylib | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( S \ { x } ) C. S ) |
| 40 | simp2 | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> s = ( S \ { x } ) ) |
|
| 41 | 40 | psseq1d | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( s C. S <-> ( S \ { x } ) C. S ) ) |
| 42 | 39 41 | mpbird | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> s C. S ) |
| 43 | simp3 | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
|
| 44 | 42 43 | mpd | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` s ) C. ( N ` S ) ) |
| 45 | 40 | fveq2d | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` s ) = ( N ` ( S \ { x } ) ) ) |
| 46 | 45 | psseq1d | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( ( N ` s ) C. ( N ` S ) <-> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
| 47 | 44 46 | mpbid | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
| 48 | 47 | 3expia | |- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) ) -> ( ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
| 49 | 36 48 | spcimdv | |- ( ( ph /\ x e. S ) -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
| 50 | 49 | 3impia | |- ( ( ph /\ x e. S /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
| 51 | 50 | pssned | |- ( ( ph /\ x e. S /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) |
| 52 | 51 | 3com23 | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) |
| 53 | 1 | 3ad2ant1 | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> A e. ( Moore ` X ) ) |
| 54 | 4 | 3ad2ant1 | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> S C_ X ) |
| 55 | simp3 | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> x e. S ) |
|
| 56 | 53 2 54 55 | mrieqvlemd | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) = ( N ` S ) ) ) |
| 57 | 56 | necon3bbid | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( -. x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) |
| 58 | 52 57 | mpbird | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> -. x e. ( N ` ( S \ { x } ) ) ) |
| 59 | 58 | 3expia | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( x e. S -> -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 60 | 59 | ralrimiv | |- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) |
| 61 | 60 | ex | |- ( ph -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 62 | 2 3 1 4 | ismri2d | |- ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 63 | 61 62 | sylibrd | |- ( ph -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> S e. I ) ) |
| 64 | 31 63 | impbid | |- ( ph -> ( S e. I <-> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) ) |