This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismri2dad.1 | |- N = ( mrCls ` A ) |
|
| ismri2dad.2 | |- I = ( mrInd ` A ) |
||
| ismri2dad.3 | |- ( ph -> A e. ( Moore ` X ) ) |
||
| ismri2dad.4 | |- ( ph -> S e. I ) |
||
| ismri2dad.5 | |- ( ph -> Y e. S ) |
||
| Assertion | ismri2dad | |- ( ph -> -. Y e. ( N ` ( S \ { Y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismri2dad.1 | |- N = ( mrCls ` A ) |
|
| 2 | ismri2dad.2 | |- I = ( mrInd ` A ) |
|
| 3 | ismri2dad.3 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| 4 | ismri2dad.4 | |- ( ph -> S e. I ) |
|
| 5 | ismri2dad.5 | |- ( ph -> Y e. S ) |
|
| 6 | 2 3 4 | mrissd | |- ( ph -> S C_ X ) |
| 7 | 1 2 3 6 | ismri2d | |- ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 8 | 4 7 | mpbid | |- ( ph -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) |
| 9 | simpr | |- ( ( ph /\ x = Y ) -> x = Y ) |
|
| 10 | 9 | sneqd | |- ( ( ph /\ x = Y ) -> { x } = { Y } ) |
| 11 | 10 | difeq2d | |- ( ( ph /\ x = Y ) -> ( S \ { x } ) = ( S \ { Y } ) ) |
| 12 | 11 | fveq2d | |- ( ( ph /\ x = Y ) -> ( N ` ( S \ { x } ) ) = ( N ` ( S \ { Y } ) ) ) |
| 13 | 9 12 | eleq12d | |- ( ( ph /\ x = Y ) -> ( x e. ( N ` ( S \ { x } ) ) <-> Y e. ( N ` ( S \ { Y } ) ) ) ) |
| 14 | 13 | notbid | |- ( ( ph /\ x = Y ) -> ( -. x e. ( N ` ( S \ { x } ) ) <-> -. Y e. ( N ` ( S \ { Y } ) ) ) ) |
| 15 | 5 14 | rspcdv | |- ( ph -> ( A. x e. S -. x e. ( N ` ( S \ { x } ) ) -> -. Y e. ( N ` ( S \ { Y } ) ) ) ) |
| 16 | 8 15 | mpd | |- ( ph -> -. Y e. ( N ` ( S \ { Y } ) ) ) |