This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcidb | |- ( C e. ( Moore ` X ) -> ( U e. C <-> ( F ` U ) = U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | 1 | mrcid | |- ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = U ) |
| 3 | simpr | |- ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> ( F ` U ) = U ) |
|
| 4 | 1 | mrcssv | |- ( C e. ( Moore ` X ) -> ( F ` U ) C_ X ) |
| 5 | 4 | adantr | |- ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> ( F ` U ) C_ X ) |
| 6 | 3 5 | eqsstrrd | |- ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> U C_ X ) |
| 7 | 1 | mrccl | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C ) |
| 8 | 6 7 | syldan | |- ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> ( F ` U ) e. C ) |
| 9 | 3 8 | eqeltrrd | |- ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> U e. C ) |
| 10 | 2 9 | impbida | |- ( C e. ( Moore ` X ) -> ( U e. C <-> ( F ` U ) = U ) ) |