This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptsuppdifd.f | |- F = ( x e. A |-> B ) |
|
| mptsuppdifd.a | |- ( ph -> A e. V ) |
||
| mptsuppdifd.z | |- ( ph -> Z e. W ) |
||
| mptsuppd.b | |- ( ( ph /\ x e. A ) -> B e. U ) |
||
| Assertion | mptsuppd | |- ( ph -> ( F supp Z ) = { x e. A | B =/= Z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptsuppdifd.f | |- F = ( x e. A |-> B ) |
|
| 2 | mptsuppdifd.a | |- ( ph -> A e. V ) |
|
| 3 | mptsuppdifd.z | |- ( ph -> Z e. W ) |
|
| 4 | mptsuppd.b | |- ( ( ph /\ x e. A ) -> B e. U ) |
|
| 5 | 1 2 3 | mptsuppdifd | |- ( ph -> ( F supp Z ) = { x e. A | B e. ( _V \ { Z } ) } ) |
| 6 | eldifsn | |- ( B e. ( _V \ { Z } ) <-> ( B e. _V /\ B =/= Z ) ) |
|
| 7 | 4 | elexd | |- ( ( ph /\ x e. A ) -> B e. _V ) |
| 8 | 7 | biantrurd | |- ( ( ph /\ x e. A ) -> ( B =/= Z <-> ( B e. _V /\ B =/= Z ) ) ) |
| 9 | 6 8 | bitr4id | |- ( ( ph /\ x e. A ) -> ( B e. ( _V \ { Z } ) <-> B =/= Z ) ) |
| 10 | 9 | rabbidva | |- ( ph -> { x e. A | B e. ( _V \ { Z } ) } = { x e. A | B =/= Z } ) |
| 11 | 5 10 | eqtrd | |- ( ph -> ( F supp Z ) = { x e. A | B =/= Z } ) |