This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptsuppdifd.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| mptsuppdifd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| mptsuppdifd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
| mptsuppd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑈 ) | ||
| Assertion | mptsuppd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptsuppdifd.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | mptsuppdifd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | mptsuppdifd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 4 | mptsuppd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑈 ) | |
| 5 | 1 2 3 | mptsuppdifd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } ) |
| 6 | eldifsn | ⊢ ( 𝐵 ∈ ( V ∖ { 𝑍 } ) ↔ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝑍 ) ) | |
| 7 | 4 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
| 8 | 7 | biantrurd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≠ 𝑍 ↔ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝑍 ) ) ) |
| 9 | 6 8 | bitr4id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( V ∖ { 𝑍 } ) ↔ 𝐵 ≠ 𝑍 ) ) |
| 10 | 9 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍 } ) |
| 11 | 5 10 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍 } ) |