This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplsubg
Metamath Proof Explorer
Description: The set of polynomials is closed under addition, i.e. it is a subgroup
of the set of power series. (Contributed by Mario Carneiro , 8-Jan-2015) (Proof shortened by AV , 16-Jul-2019)
Ref
Expression
Hypotheses
mplsubg.s
⊢ S = I mPwSer R
mplsubg.p
⊢ P = I mPoly R
mplsubg.u
⊢ U = Base P
mplsubg.i
⊢ φ → I ∈ W
mplsubg.r
⊢ φ → R ∈ Grp
Assertion
mplsubg
⊢ φ → U ∈ SubGrp ⁡ S
Proof
Step
Hyp
Ref
Expression
1
mplsubg.s
⊢ S = I mPwSer R
2
mplsubg.p
⊢ P = I mPoly R
3
mplsubg.u
⊢ U = Base P
4
mplsubg.i
⊢ φ → I ∈ W
5
mplsubg.r
⊢ φ → R ∈ Grp
6
eqid
⊢ Base S = Base S
7
eqid
⊢ 0 R = 0 R
8
eqid
⊢ f ∈ ℕ 0 I | f -1 ℕ ∈ Fin = f ∈ ℕ 0 I | f -1 ℕ ∈ Fin
9
0fi
⊢ ∅ ∈ Fin
10
9
a1i
⊢ φ → ∅ ∈ Fin
11
unfi
⊢ x ∈ Fin ∧ y ∈ Fin → x ∪ y ∈ Fin
12
11
adantl
⊢ φ ∧ x ∈ Fin ∧ y ∈ Fin → x ∪ y ∈ Fin
13
ssfi
⊢ x ∈ Fin ∧ y ⊆ x → y ∈ Fin
14
13
adantl
⊢ φ ∧ x ∈ Fin ∧ y ⊆ x → y ∈ Fin
15
1 2 3 4
mplsubglem2
⊢ φ → U = g ∈ Base S | g supp 0 R ∈ Fin
16
1 6 7 8 4 10 12 14 15 5
mplsubglem
⊢ φ → U ∈ SubGrp ⁡ S