This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar 1 embedded into a left module corresponds to the 1 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ascl0.a | |- A = ( algSc ` W ) |
|
| ascl0.f | |- F = ( Scalar ` W ) |
||
| ascl0.l | |- ( ph -> W e. LMod ) |
||
| ascl0.r | |- ( ph -> W e. Ring ) |
||
| Assertion | ascl1 | |- ( ph -> ( A ` ( 1r ` F ) ) = ( 1r ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ascl0.a | |- A = ( algSc ` W ) |
|
| 2 | ascl0.f | |- F = ( Scalar ` W ) |
|
| 3 | ascl0.l | |- ( ph -> W e. LMod ) |
|
| 4 | ascl0.r | |- ( ph -> W e. Ring ) |
|
| 5 | 2 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 6 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 7 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 8 | 6 7 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. ( Base ` F ) ) |
| 9 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 10 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 11 | 1 2 6 9 10 | asclval | |- ( ( 1r ` F ) e. ( Base ` F ) -> ( A ` ( 1r ` F ) ) = ( ( 1r ` F ) ( .s ` W ) ( 1r ` W ) ) ) |
| 12 | 3 5 8 11 | 4syl | |- ( ph -> ( A ` ( 1r ` F ) ) = ( ( 1r ` F ) ( .s ` W ) ( 1r ` W ) ) ) |
| 13 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 14 | 13 10 | ringidcl | |- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 15 | 4 14 | syl | |- ( ph -> ( 1r ` W ) e. ( Base ` W ) ) |
| 16 | 13 2 9 7 | lmodvs1 | |- ( ( W e. LMod /\ ( 1r ` W ) e. ( Base ` W ) ) -> ( ( 1r ` F ) ( .s ` W ) ( 1r ` W ) ) = ( 1r ` W ) ) |
| 17 | 3 15 16 | syl2anc | |- ( ph -> ( ( 1r ` F ) ( .s ` W ) ( 1r ` W ) ) = ( 1r ` W ) ) |
| 18 | 12 17 | eqtrd | |- ( ph -> ( A ` ( 1r ` F ) ) = ( 1r ` W ) ) |