This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of mof0 with stronger requirements on distinct variables. Uses mo4 . (Contributed by Zhi Wang, 19-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mof0ALT | |- E* f f : A --> (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f00 | |- ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) ) |
|
| 2 | 1 | simplbi | |- ( f : A --> (/) -> f = (/) ) |
| 3 | f00 | |- ( g : A --> (/) <-> ( g = (/) /\ A = (/) ) ) |
|
| 4 | 3 | simplbi | |- ( g : A --> (/) -> g = (/) ) |
| 5 | eqtr3 | |- ( ( f = (/) /\ g = (/) ) -> f = g ) |
|
| 6 | 2 4 5 | syl2an | |- ( ( f : A --> (/) /\ g : A --> (/) ) -> f = g ) |
| 7 | 6 | gen2 | |- A. f A. g ( ( f : A --> (/) /\ g : A --> (/) ) -> f = g ) |
| 8 | feq1 | |- ( f = g -> ( f : A --> (/) <-> g : A --> (/) ) ) |
|
| 9 | 8 | mo4 | |- ( E* f f : A --> (/) <-> A. f A. g ( ( f : A --> (/) /\ g : A --> (/) ) -> f = g ) ) |
| 10 | 7 9 | mpbir | |- E* f f : A --> (/) |