This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn assuming ax-rep , or eufsn2 assuming ax-pow and ax-un . (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufsn.1 | |- ( ph -> B e. W ) |
|
| eufsnlem.2 | |- ( ph -> ( A X. { B } ) e. V ) |
||
| Assertion | eufsnlem | |- ( ph -> E! f f : A --> { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsn.1 | |- ( ph -> B e. W ) |
|
| 2 | eufsnlem.2 | |- ( ph -> ( A X. { B } ) e. V ) |
|
| 3 | fconst2g | |- ( B e. W -> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) |
|
| 4 | 1 3 | syl | |- ( ph -> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) |
| 5 | 4 | alrimiv | |- ( ph -> A. f ( f : A --> { B } <-> f = ( A X. { B } ) ) ) |
| 6 | eqeq2 | |- ( g = ( A X. { B } ) -> ( f = g <-> f = ( A X. { B } ) ) ) |
|
| 7 | 6 | bibi2d | |- ( g = ( A X. { B } ) -> ( ( f : A --> { B } <-> f = g ) <-> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) ) |
| 8 | 7 | albidv | |- ( g = ( A X. { B } ) -> ( A. f ( f : A --> { B } <-> f = g ) <-> A. f ( f : A --> { B } <-> f = ( A X. { B } ) ) ) ) |
| 9 | 2 5 8 | spcedv | |- ( ph -> E. g A. f ( f : A --> { B } <-> f = g ) ) |
| 10 | eu6im | |- ( E. g A. f ( f : A --> { B } <-> f = g ) -> E! f f : A --> { B } ) |
|
| 11 | 9 10 | syl | |- ( ph -> E! f f : A --> { B } ) |