This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013) (Proof shortened by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndfo.b | |- B = ( Base ` G ) |
|
| mndfo.p | |- .+ = ( +g ` G ) |
||
| Assertion | mndfo | |- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) -onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndfo.b | |- B = ( Base ` G ) |
|
| 2 | mndfo.p | |- .+ = ( +g ` G ) |
|
| 3 | eqid | |- ( +f ` G ) = ( +f ` G ) |
|
| 4 | 1 3 | mndpfo | |- ( G e. Mnd -> ( +f ` G ) : ( B X. B ) -onto-> B ) |
| 5 | 4 | adantr | |- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( +f ` G ) : ( B X. B ) -onto-> B ) |
| 6 | 1 2 3 | plusfeq | |- ( .+ Fn ( B X. B ) -> ( +f ` G ) = .+ ) |
| 7 | 6 | eqcomd | |- ( .+ Fn ( B X. B ) -> .+ = ( +f ` G ) ) |
| 8 | 7 | adantl | |- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ = ( +f ` G ) ) |
| 9 | foeq1 | |- ( .+ = ( +f ` G ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) ) |
|
| 10 | 8 9 | syl | |- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) ) |
| 11 | 5 10 | mpbird | |- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) -onto-> B ) |