This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of Gleason p. 223. (Contributed by NM, 27-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mettri | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) + ( C D B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mettri2 | |- ( ( D e. ( Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A D B ) <_ ( ( C D A ) + ( C D B ) ) ) |
|
| 2 | 1 | expcom | |- ( ( C e. X /\ A e. X /\ B e. X ) -> ( D e. ( Met ` X ) -> ( A D B ) <_ ( ( C D A ) + ( C D B ) ) ) ) |
| 3 | 2 | 3coml | |- ( ( A e. X /\ B e. X /\ C e. X ) -> ( D e. ( Met ` X ) -> ( A D B ) <_ ( ( C D A ) + ( C D B ) ) ) ) |
| 4 | 3 | impcom | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( C D A ) + ( C D B ) ) ) |
| 5 | metsym | |- ( ( D e. ( Met ` X ) /\ A e. X /\ C e. X ) -> ( A D C ) = ( C D A ) ) |
|
| 6 | 5 | 3adant3r2 | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D C ) = ( C D A ) ) |
| 7 | 6 | oveq1d | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) + ( C D B ) ) = ( ( C D A ) + ( C D B ) ) ) |
| 8 | 4 7 | breqtrrd | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) + ( C D B ) ) ) |