This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 16-Sep-2011) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joincom.b | |- B = ( Base ` K ) |
|
| joincom.j | |- .\/ = ( join ` K ) |
||
| Assertion | joincomALT | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joincom.b | |- B = ( Base ` K ) |
|
| 2 | joincom.j | |- .\/ = ( join ` K ) |
|
| 3 | prcom | |- { Y , X } = { X , Y } |
|
| 4 | 3 | fveq2i | |- ( ( lub ` K ) ` { Y , X } ) = ( ( lub ` K ) ` { X , Y } ) |
| 5 | 4 | a1i | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( ( lub ` K ) ` { Y , X } ) = ( ( lub ` K ) ` { X , Y } ) ) |
| 6 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
| 7 | simp1 | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> K e. V ) |
|
| 8 | simp3 | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 9 | simp2 | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 10 | 6 2 7 8 9 | joinval | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( Y .\/ X ) = ( ( lub ` K ) ` { Y , X } ) ) |
| 11 | 6 2 7 9 8 | joinval | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( ( lub ` K ) ` { X , Y } ) ) |
| 12 | 5 10 11 | 3eqtr4rd | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |