This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joindm2.b | |- B = ( Base ` K ) |
|
| joindm2.k | |- ( ph -> K e. V ) |
||
| meetdm2.g | |- G = ( glb ` K ) |
||
| meetdm2.m | |- ./\ = ( meet ` K ) |
||
| Assertion | meetdm2 | |- ( ph -> ( dom ./\ = ( B X. B ) <-> A. x e. B A. y e. B { x , y } e. dom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindm2.b | |- B = ( Base ` K ) |
|
| 2 | joindm2.k | |- ( ph -> K e. V ) |
|
| 3 | meetdm2.g | |- G = ( glb ` K ) |
|
| 4 | meetdm2.m | |- ./\ = ( meet ` K ) |
|
| 5 | 1 4 2 | meetdmss | |- ( ph -> dom ./\ C_ ( B X. B ) ) |
| 6 | eqss | |- ( dom ./\ = ( B X. B ) <-> ( dom ./\ C_ ( B X. B ) /\ ( B X. B ) C_ dom ./\ ) ) |
|
| 7 | 6 | baib | |- ( dom ./\ C_ ( B X. B ) -> ( dom ./\ = ( B X. B ) <-> ( B X. B ) C_ dom ./\ ) ) |
| 8 | 5 7 | syl | |- ( ph -> ( dom ./\ = ( B X. B ) <-> ( B X. B ) C_ dom ./\ ) ) |
| 9 | relxp | |- Rel ( B X. B ) |
|
| 10 | ssrel | |- ( Rel ( B X. B ) -> ( ( B X. B ) C_ dom ./\ <-> A. x A. y ( <. x , y >. e. ( B X. B ) -> <. x , y >. e. dom ./\ ) ) ) |
|
| 11 | 9 10 | mp1i | |- ( ph -> ( ( B X. B ) C_ dom ./\ <-> A. x A. y ( <. x , y >. e. ( B X. B ) -> <. x , y >. e. dom ./\ ) ) ) |
| 12 | opelxp | |- ( <. x , y >. e. ( B X. B ) <-> ( x e. B /\ y e. B ) ) |
|
| 13 | 12 | a1i | |- ( ph -> ( <. x , y >. e. ( B X. B ) <-> ( x e. B /\ y e. B ) ) ) |
| 14 | vex | |- x e. _V |
|
| 15 | 14 | a1i | |- ( ph -> x e. _V ) |
| 16 | vex | |- y e. _V |
|
| 17 | 16 | a1i | |- ( ph -> y e. _V ) |
| 18 | 3 4 2 15 17 | meetdef | |- ( ph -> ( <. x , y >. e. dom ./\ <-> { x , y } e. dom G ) ) |
| 19 | 13 18 | imbi12d | |- ( ph -> ( ( <. x , y >. e. ( B X. B ) -> <. x , y >. e. dom ./\ ) <-> ( ( x e. B /\ y e. B ) -> { x , y } e. dom G ) ) ) |
| 20 | 19 | 2albidv | |- ( ph -> ( A. x A. y ( <. x , y >. e. ( B X. B ) -> <. x , y >. e. dom ./\ ) <-> A. x A. y ( ( x e. B /\ y e. B ) -> { x , y } e. dom G ) ) ) |
| 21 | r2al | |- ( A. x e. B A. y e. B { x , y } e. dom G <-> A. x A. y ( ( x e. B /\ y e. B ) -> { x , y } e. dom G ) ) |
|
| 22 | 20 21 | bitr4di | |- ( ph -> ( A. x A. y ( <. x , y >. e. ( B X. B ) -> <. x , y >. e. dom ./\ ) <-> A. x e. B A. y e. B { x , y } e. dom G ) ) |
| 23 | 8 11 22 | 3bitrd | |- ( ph -> ( dom ./\ = ( B X. B ) <-> A. x e. B A. y e. B { x , y } e. dom G ) ) |