This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetcom.b | |- B = ( Base ` K ) |
|
| meetcom.m | |- ./\ = ( meet ` K ) |
||
| Assertion | meetcomALT | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetcom.b | |- B = ( Base ` K ) |
|
| 2 | meetcom.m | |- ./\ = ( meet ` K ) |
|
| 3 | prcom | |- { Y , X } = { X , Y } |
|
| 4 | 3 | fveq2i | |- ( ( glb ` K ) ` { Y , X } ) = ( ( glb ` K ) ` { X , Y } ) |
| 5 | 4 | a1i | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( ( glb ` K ) ` { Y , X } ) = ( ( glb ` K ) ` { X , Y } ) ) |
| 6 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 7 | simp1 | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> K e. V ) |
|
| 8 | simp3 | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 9 | simp2 | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 10 | 6 2 7 8 9 | meetval | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( Y ./\ X ) = ( ( glb ` K ) ` { Y , X } ) ) |
| 11 | 6 2 7 9 8 | meetval | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( ( glb ` K ) ` { X , Y } ) ) |
| 12 | 5 10 11 | 3eqtr4rd | |- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |