This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of a poset is commutative. (The antecedent <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ i.e., "the meets exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 17-Sep-2011) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetcom.b | |- B = ( Base ` K ) |
|
| meetcom.m | |- ./\ = ( meet ` K ) |
||
| Assertion | meetcom | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetcom.b | |- B = ( Base ` K ) |
|
| 2 | meetcom.m | |- ./\ = ( meet ` K ) |
|
| 3 | 1 2 | meetcomALT | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 4 | 3 | adantr | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |