This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetcom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| meetcom.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | meetcomALT | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetcom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | meetcom.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | prcom | ⊢ { 𝑌 , 𝑋 } = { 𝑋 , 𝑌 } | |
| 4 | 3 | fveq2i | ⊢ ( ( glb ‘ 𝐾 ) ‘ { 𝑌 , 𝑋 } ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) |
| 5 | 4 | a1i | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑌 , 𝑋 } ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 6 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 7 | simp1 | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ 𝑉 ) | |
| 8 | simp3 | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 9 | simp2 | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 10 | 6 2 7 8 9 | meetval | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑋 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑌 , 𝑋 } ) ) |
| 11 | 6 2 7 9 8 | meetval | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 12 | 5 10 11 | 3eqtr4rd | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |