This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011) (Revised by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-atl | |- AtLat = { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cal | |- AtLat |
|
| 1 | vk | |- k |
|
| 2 | clat | |- Lat |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- k |
| 5 | 4 3 | cfv | |- ( Base ` k ) |
| 6 | cglb | |- glb |
|
| 7 | 4 6 | cfv | |- ( glb ` k ) |
| 8 | 7 | cdm | |- dom ( glb ` k ) |
| 9 | 5 8 | wcel | |- ( Base ` k ) e. dom ( glb ` k ) |
| 10 | vx | |- x |
|
| 11 | 10 | cv | |- x |
| 12 | cp0 | |- 0. |
|
| 13 | 4 12 | cfv | |- ( 0. ` k ) |
| 14 | 11 13 | wne | |- x =/= ( 0. ` k ) |
| 15 | vp | |- p |
|
| 16 | catm | |- Atoms |
|
| 17 | 4 16 | cfv | |- ( Atoms ` k ) |
| 18 | 15 | cv | |- p |
| 19 | cple | |- le |
|
| 20 | 4 19 | cfv | |- ( le ` k ) |
| 21 | 18 11 20 | wbr | |- p ( le ` k ) x |
| 22 | 21 15 17 | wrex | |- E. p e. ( Atoms ` k ) p ( le ` k ) x |
| 23 | 14 22 | wi | |- ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) |
| 24 | 23 10 5 | wral | |- A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) |
| 25 | 9 24 | wa | |- ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) |
| 26 | 25 1 2 | crab | |- { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) } |
| 27 | 0 26 | wceq | |- AtLat = { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) } |