This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegpropd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| mdegpropd.b2 | |- ( ph -> B = ( Base ` S ) ) |
||
| mdegpropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
||
| Assertion | mdegpropd | |- ( ph -> ( I mDeg R ) = ( I mDeg S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegpropd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | mdegpropd.b2 | |- ( ph -> B = ( Base ` S ) ) |
|
| 3 | mdegpropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
|
| 4 | 1 2 3 | mplbaspropd | |- ( ph -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |
| 5 | 1 2 3 | grpidpropd | |- ( ph -> ( 0g ` R ) = ( 0g ` S ) ) |
| 6 | 5 | oveq2d | |- ( ph -> ( c supp ( 0g ` R ) ) = ( c supp ( 0g ` S ) ) ) |
| 7 | 6 | imaeq2d | |- ( ph -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( c supp ( 0g ` R ) ) ) = ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( c supp ( 0g ` S ) ) ) ) |
| 8 | 7 | supeq1d | |- ( ph -> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( c supp ( 0g ` R ) ) ) , RR* , < ) = sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( c supp ( 0g ` S ) ) ) , RR* , < ) ) |
| 9 | 4 8 | mpteq12dv | |- ( ph -> ( c e. ( Base ` ( I mPoly R ) ) |-> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( c supp ( 0g ` R ) ) ) , RR* , < ) ) = ( c e. ( Base ` ( I mPoly S ) ) |-> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( c supp ( 0g ` S ) ) ) , RR* , < ) ) ) |
| 10 | eqid | |- ( I mDeg R ) = ( I mDeg R ) |
|
| 11 | eqid | |- ( I mPoly R ) = ( I mPoly R ) |
|
| 12 | eqid | |- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
|
| 13 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 14 | eqid | |- { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } = { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |
|
| 15 | eqid | |- ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) = ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) |
|
| 16 | 10 11 12 13 14 15 | mdegfval | |- ( I mDeg R ) = ( c e. ( Base ` ( I mPoly R ) ) |-> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( c supp ( 0g ` R ) ) ) , RR* , < ) ) |
| 17 | eqid | |- ( I mDeg S ) = ( I mDeg S ) |
|
| 18 | eqid | |- ( I mPoly S ) = ( I mPoly S ) |
|
| 19 | eqid | |- ( Base ` ( I mPoly S ) ) = ( Base ` ( I mPoly S ) ) |
|
| 20 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 21 | 17 18 19 20 14 15 | mdegfval | |- ( I mDeg S ) = ( c e. ( Base ` ( I mPoly S ) ) |-> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( c supp ( 0g ` S ) ) ) , RR* , < ) ) |
| 22 | 9 16 21 | 3eqtr4g | |- ( ph -> ( I mDeg R ) = ( I mDeg S ) ) |