This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| mdegpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | ||
| mdegpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | ||
| Assertion | mdegpropd | ⊢ ( 𝜑 → ( 𝐼 mDeg 𝑅 ) = ( 𝐼 mDeg 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | mdegpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | |
| 3 | mdegpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | |
| 4 | 1 2 3 | mplbaspropd | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
| 5 | 1 2 3 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝜑 → ( 𝑐 supp ( 0g ‘ 𝑅 ) ) = ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) |
| 7 | 6 | imaeq2d | ⊢ ( 𝜑 → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑅 ) ) ) = ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) ) |
| 8 | 7 | supeq1d | ⊢ ( 𝜑 → sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) = sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) , ℝ* , < ) ) |
| 9 | 4 8 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑐 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ↦ sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) = ( 𝑐 ∈ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ↦ sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) , ℝ* , < ) ) ) |
| 10 | eqid | ⊢ ( 𝐼 mDeg 𝑅 ) = ( 𝐼 mDeg 𝑅 ) | |
| 11 | eqid | ⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 14 | eqid | ⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } | |
| 15 | eqid | ⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) | |
| 16 | 10 11 12 13 14 15 | mdegfval | ⊢ ( 𝐼 mDeg 𝑅 ) = ( 𝑐 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ↦ sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
| 17 | eqid | ⊢ ( 𝐼 mDeg 𝑆 ) = ( 𝐼 mDeg 𝑆 ) | |
| 18 | eqid | ⊢ ( 𝐼 mPoly 𝑆 ) = ( 𝐼 mPoly 𝑆 ) | |
| 19 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) | |
| 20 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 21 | 17 18 19 20 14 15 | mdegfval | ⊢ ( 𝐼 mDeg 𝑆 ) = ( 𝑐 ∈ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ↦ sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝑐 supp ( 0g ‘ 𝑆 ) ) ) , ℝ* , < ) ) |
| 22 | 9 16 21 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐼 mDeg 𝑅 ) = ( 𝐼 mDeg 𝑆 ) ) |