This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | |- K = ( Base ` R ) |
|
| mat1rhmval.a | |- A = ( { E } Mat R ) |
||
| mat1rhmval.b | |- B = ( Base ` A ) |
||
| mat1rhmval.o | |- O = <. E , E >. |
||
| mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
||
| Assertion | mat1rhmelval | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( E ( F ` X ) E ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | |- K = ( Base ` R ) |
|
| 2 | mat1rhmval.a | |- A = ( { E } Mat R ) |
|
| 3 | mat1rhmval.b | |- B = ( Base ` A ) |
|
| 4 | mat1rhmval.o | |- O = <. E , E >. |
|
| 5 | mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
|
| 6 | df-ov | |- ( E ( F ` X ) E ) = ( ( F ` X ) ` <. E , E >. ) |
|
| 7 | 1 2 3 4 5 | mat1rhmval | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( F ` X ) = { <. O , X >. } ) |
| 8 | 7 | fveq1d | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( ( F ` X ) ` <. E , E >. ) = ( { <. O , X >. } ` <. E , E >. ) ) |
| 9 | 4 | eqcomi | |- <. E , E >. = O |
| 10 | 9 | fveq2i | |- ( { <. O , X >. } ` <. E , E >. ) = ( { <. O , X >. } ` O ) |
| 11 | opex | |- <. E , E >. e. _V |
|
| 12 | 4 11 | eqeltri | |- O e. _V |
| 13 | simp3 | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> X e. K ) |
|
| 14 | fvsng | |- ( ( O e. _V /\ X e. K ) -> ( { <. O , X >. } ` O ) = X ) |
|
| 15 | 12 13 14 | sylancr | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( { <. O , X >. } ` O ) = X ) |
| 16 | 10 15 | eqtrid | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( { <. O , X >. } ` <. E , E >. ) = X ) |
| 17 | 8 16 | eqtrd | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( ( F ` X ) ` <. E , E >. ) = X ) |
| 18 | 6 17 | eqtrid | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( E ( F ` X ) E ) = X ) |