This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ring homomorphism F is a matrix with dimension 1. (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | |- K = ( Base ` R ) |
|
| mat1rhmval.a | |- A = ( { E } Mat R ) |
||
| mat1rhmval.b | |- B = ( Base ` A ) |
||
| mat1rhmval.o | |- O = <. E , E >. |
||
| mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
||
| Assertion | mat1rhmcl | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( F ` X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | |- K = ( Base ` R ) |
|
| 2 | mat1rhmval.a | |- A = ( { E } Mat R ) |
|
| 3 | mat1rhmval.b | |- B = ( Base ` A ) |
|
| 4 | mat1rhmval.o | |- O = <. E , E >. |
|
| 5 | mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
|
| 6 | 2 1 4 | mat1dimbas | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> { <. O , X >. } e. ( Base ` A ) ) |
| 7 | 1 2 3 4 5 | mat1rhmval | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( F ` X ) = { <. O , X >. } ) |
| 8 | 3 | a1i | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> B = ( Base ` A ) ) |
| 9 | 6 7 8 | 3eltr4d | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( F ` X ) e. B ) |