This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity matrix is a matrix. (Contributed by AV, 15-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1bas.a | |- A = ( N Mat R ) |
|
| mat1bas.b | |- B = ( Base ` A ) |
||
| mat1bas.i | |- .1. = ( 1r ` ( N Mat R ) ) |
||
| Assertion | mat1bas | |- ( ( R e. Ring /\ N e. Fin ) -> .1. e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1bas.a | |- A = ( N Mat R ) |
|
| 2 | mat1bas.b | |- B = ( Base ` A ) |
|
| 3 | mat1bas.i | |- .1. = ( 1r ` ( N Mat R ) ) |
|
| 4 | eqid | |- ( N Mat R ) = ( N Mat R ) |
|
| 5 | 4 | matring | |- ( ( N e. Fin /\ R e. Ring ) -> ( N Mat R ) e. Ring ) |
| 6 | 5 | ancoms | |- ( ( R e. Ring /\ N e. Fin ) -> ( N Mat R ) e. Ring ) |
| 7 | 1 | fveq2i | |- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
| 8 | 2 7 | eqtri | |- B = ( Base ` ( N Mat R ) ) |
| 9 | 8 3 | ringidcl | |- ( ( N Mat R ) e. Ring -> .1. e. B ) |
| 10 | 6 9 | syl | |- ( ( R e. Ring /\ N e. Fin ) -> .1. e. B ) |