This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra of matrices with dimension 1 over a commutative ring is a commutative ring. (Contributed by AV, 16-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1dim.a | |- A = ( { E } Mat R ) |
|
| mat1dim.b | |- B = ( Base ` R ) |
||
| mat1dim.o | |- O = <. E , E >. |
||
| Assertion | mat1dimcrng | |- ( ( R e. CRing /\ E e. V ) -> A e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1dim.a | |- A = ( { E } Mat R ) |
|
| 2 | mat1dim.b | |- B = ( Base ` R ) |
|
| 3 | mat1dim.o | |- O = <. E , E >. |
|
| 4 | snfi | |- { E } e. Fin |
|
| 5 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 6 | 5 | adantr | |- ( ( R e. CRing /\ E e. V ) -> R e. Ring ) |
| 7 | 1 | matring | |- ( ( { E } e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 8 | 4 6 7 | sylancr | |- ( ( R e. CRing /\ E e. V ) -> A e. Ring ) |
| 9 | 1 2 3 | mat1dimelbas | |- ( ( R e. Ring /\ E e. V ) -> ( x e. ( Base ` A ) <-> E. a e. B x = { <. O , a >. } ) ) |
| 10 | 1 2 3 | mat1dimelbas | |- ( ( R e. Ring /\ E e. V ) -> ( y e. ( Base ` A ) <-> E. b e. B y = { <. O , b >. } ) ) |
| 11 | 9 10 | anbi12d | |- ( ( R e. Ring /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) <-> ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) ) ) |
| 12 | 5 11 | sylan | |- ( ( R e. CRing /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) <-> ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) ) ) |
| 13 | simpll | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> R e. CRing ) |
|
| 14 | simprl | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
|
| 15 | simprr | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
|
| 16 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 17 | 2 16 | crngcom | |- ( ( R e. CRing /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) |
| 18 | 13 14 15 17 | syl3anc | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) |
| 19 | 18 | opeq2d | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> <. O , ( a ( .r ` R ) b ) >. = <. O , ( b ( .r ` R ) a ) >. ) |
| 20 | 19 | sneqd | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> { <. O , ( a ( .r ` R ) b ) >. } = { <. O , ( b ( .r ` R ) a ) >. } ) |
| 21 | 5 | anim1i | |- ( ( R e. CRing /\ E e. V ) -> ( R e. Ring /\ E e. V ) ) |
| 22 | 1 2 3 | mat1dimmul | |- ( ( ( R e. Ring /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = { <. O , ( a ( .r ` R ) b ) >. } ) |
| 23 | 21 22 | sylan | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = { <. O , ( a ( .r ` R ) b ) >. } ) |
| 24 | pm3.22 | |- ( ( a e. B /\ b e. B ) -> ( b e. B /\ a e. B ) ) |
|
| 25 | 1 2 3 | mat1dimmul | |- ( ( ( R e. Ring /\ E e. V ) /\ ( b e. B /\ a e. B ) ) -> ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) = { <. O , ( b ( .r ` R ) a ) >. } ) |
| 26 | 21 24 25 | syl2an | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) = { <. O , ( b ( .r ` R ) a ) >. } ) |
| 27 | 20 23 26 | 3eqtr4d | |- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 28 | 27 | expr | |- ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) -> ( b e. B -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) |
| 29 | 28 | adantr | |- ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) -> ( b e. B -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) |
| 30 | 29 | imp | |- ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 31 | 30 | adantr | |- ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 32 | oveq12 | |- ( ( x = { <. O , a >. } /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) ) |
|
| 33 | 32 | ad4ant24 | |- ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) ) |
| 34 | oveq12 | |- ( ( y = { <. O , b >. } /\ x = { <. O , a >. } ) -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
|
| 35 | 34 | expcom | |- ( x = { <. O , a >. } -> ( y = { <. O , b >. } -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) |
| 36 | 35 | ad2antlr | |- ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) -> ( y = { <. O , b >. } -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) |
| 37 | 36 | imp | |- ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 38 | 31 33 37 | 3eqtr4d | |- ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) |
| 39 | 38 | rexlimdva2 | |- ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) -> ( E. b e. B y = { <. O , b >. } -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 40 | 39 | rexlimdva2 | |- ( ( R e. CRing /\ E e. V ) -> ( E. a e. B x = { <. O , a >. } -> ( E. b e. B y = { <. O , b >. } -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) ) |
| 41 | 40 | impd | |- ( ( R e. CRing /\ E e. V ) -> ( ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 42 | 12 41 | sylbid | |- ( ( R e. CRing /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 43 | 42 | ralrimivv | |- ( ( R e. CRing /\ E e. V ) -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) |
| 44 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 45 | eqid | |- ( .r ` A ) = ( .r ` A ) |
|
| 46 | 44 45 | iscrng2 | |- ( A e. CRing <-> ( A e. Ring /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 47 | 8 43 46 | sylanbrc | |- ( ( R e. CRing /\ E e. V ) -> A e. CRing ) |