This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1dim.a | |- A = ( { E } Mat R ) |
|
| mat1dim.b | |- B = ( Base ` R ) |
||
| mat1dim.o | |- O = <. E , E >. |
||
| Assertion | mat1dim0 | |- ( ( R e. Ring /\ E e. V ) -> ( 0g ` A ) = { <. O , ( 0g ` R ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1dim.a | |- A = ( { E } Mat R ) |
|
| 2 | mat1dim.b | |- B = ( Base ` R ) |
|
| 3 | mat1dim.o | |- O = <. E , E >. |
|
| 4 | snfi | |- { E } e. Fin |
|
| 5 | 4 | a1i | |- ( E e. V -> { E } e. Fin ) |
| 6 | 5 | anim2i | |- ( ( R e. Ring /\ E e. V ) -> ( R e. Ring /\ { E } e. Fin ) ) |
| 7 | 6 | ancomd | |- ( ( R e. Ring /\ E e. V ) -> ( { E } e. Fin /\ R e. Ring ) ) |
| 8 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 9 | 1 8 | mat0op | |- ( ( { E } e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( x e. { E } , y e. { E } |-> ( 0g ` R ) ) ) |
| 10 | 7 9 | syl | |- ( ( R e. Ring /\ E e. V ) -> ( 0g ` A ) = ( x e. { E } , y e. { E } |-> ( 0g ` R ) ) ) |
| 11 | simpr | |- ( ( R e. Ring /\ E e. V ) -> E e. V ) |
|
| 12 | fvexd | |- ( ( R e. Ring /\ E e. V ) -> ( 0g ` R ) e. _V ) |
|
| 13 | eqid | |- ( x e. { E } , y e. { E } |-> ( 0g ` R ) ) = ( x e. { E } , y e. { E } |-> ( 0g ` R ) ) |
|
| 14 | eqidd | |- ( x = E -> ( 0g ` R ) = ( 0g ` R ) ) |
|
| 15 | eqidd | |- ( y = E -> ( 0g ` R ) = ( 0g ` R ) ) |
|
| 16 | 13 14 15 | mposn | |- ( ( E e. V /\ E e. V /\ ( 0g ` R ) e. _V ) -> ( x e. { E } , y e. { E } |-> ( 0g ` R ) ) = { <. <. E , E >. , ( 0g ` R ) >. } ) |
| 17 | 3 | eqcomi | |- <. E , E >. = O |
| 18 | 17 | opeq1i | |- <. <. E , E >. , ( 0g ` R ) >. = <. O , ( 0g ` R ) >. |
| 19 | 18 | sneqi | |- { <. <. E , E >. , ( 0g ` R ) >. } = { <. O , ( 0g ` R ) >. } |
| 20 | 16 19 | eqtrdi | |- ( ( E e. V /\ E e. V /\ ( 0g ` R ) e. _V ) -> ( x e. { E } , y e. { E } |-> ( 0g ` R ) ) = { <. O , ( 0g ` R ) >. } ) |
| 21 | 11 11 12 20 | syl3anc | |- ( ( R e. Ring /\ E e. V ) -> ( x e. { E } , y e. { E } |-> ( 0g ` R ) ) = { <. O , ( 0g ` R ) >. } ) |
| 22 | 10 21 | eqtrd | |- ( ( R e. Ring /\ E e. V ) -> ( 0g ` A ) = { <. O , ( 0g ` R ) >. } ) |