This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mat0dim.a | |- A = ( (/) Mat R ) |
|
| Assertion | mat0dimid | |- ( R e. Ring -> ( 1r ` A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat0dim.a | |- A = ( (/) Mat R ) |
|
| 2 | 0fi | |- (/) e. Fin |
|
| 3 | 1 | matring | |- ( ( (/) e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 4 | 2 3 | mpan | |- ( R e. Ring -> A e. Ring ) |
| 5 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 6 | eqid | |- ( 1r ` A ) = ( 1r ` A ) |
|
| 7 | 5 6 | ringidcl | |- ( A e. Ring -> ( 1r ` A ) e. ( Base ` A ) ) |
| 8 | 4 7 | syl | |- ( R e. Ring -> ( 1r ` A ) e. ( Base ` A ) ) |
| 9 | 1 | fveq2i | |- ( Base ` A ) = ( Base ` ( (/) Mat R ) ) |
| 10 | mat0dimbas0 | |- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
|
| 11 | 9 10 | eqtrid | |- ( R e. Ring -> ( Base ` A ) = { (/) } ) |
| 12 | 11 | eleq2d | |- ( R e. Ring -> ( ( 1r ` A ) e. ( Base ` A ) <-> ( 1r ` A ) e. { (/) } ) ) |
| 13 | elsni | |- ( ( 1r ` A ) e. { (/) } -> ( 1r ` A ) = (/) ) |
|
| 14 | 12 13 | biimtrdi | |- ( R e. Ring -> ( ( 1r ` A ) e. ( Base ` A ) -> ( 1r ` A ) = (/) ) ) |
| 15 | 8 14 | mpd | |- ( R e. Ring -> ( 1r ` A ) = (/) ) |