This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of Kunen p. 31. (Contributed by Raph Levien, 4-Dec-2003) (Proof shortened by AV, 16-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapex | |- ( ( A e. C /\ B e. D ) -> { f | f : A --> B } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { f | ( f : A --> B /\ f : A --> B ) } = { f | ( f : A --> B /\ f : A --> B ) } |
|
| 2 | 1 | fabexg | |- ( ( A e. C /\ B e. D ) -> { f | ( f : A --> B /\ f : A --> B ) } e. _V ) |
| 3 | id | |- ( f : A --> B -> f : A --> B ) |
|
| 4 | 3 | ancli | |- ( f : A --> B -> ( f : A --> B /\ f : A --> B ) ) |
| 5 | 4 | ss2abi | |- { f | f : A --> B } C_ { f | ( f : A --> B /\ f : A --> B ) } |
| 6 | 5 | a1i | |- ( ( A e. C /\ B e. D ) -> { f | f : A --> B } C_ { f | ( f : A --> B /\ f : A --> B ) } ) |
| 7 | 2 6 | ssexd | |- ( ( A e. C /\ B e. D ) -> { f | f : A --> B } e. _V ) |