This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Revised by Mario Carneiro, 15-Nov-2014) (Proof shortened by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsnen.1 | ⊢ 𝐴 ∈ V | |
| mapsnen.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | mapsnen | ⊢ ( 𝐴 ↑m { 𝐵 } ) ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsnen.1 | ⊢ 𝐴 ∈ V | |
| 2 | mapsnen.2 | ⊢ 𝐵 ∈ V | |
| 3 | id | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ V ) | |
| 4 | 2 | a1i | ⊢ ( 𝐴 ∈ V → 𝐵 ∈ V ) |
| 5 | 3 4 | mapsnend | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m { 𝐵 } ) ≈ 𝐴 ) |
| 6 | 1 5 | ax-mp | ⊢ ( 𝐴 ↑m { 𝐵 } ) ≈ 𝐴 |